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Abstract Statistical detection of mass malware has been
shown to be highly successful. However, this type of mal-
ware is less interesting to cyber security officers of larger
organizations, who are more concerned with detecting mal-
ware indicative of a targeted attack. Here we investigate the
potential of statistically based approaches to detect suchmal-
ware using a malware family associated with a large number
of targeted network intrusions. Our approach is complemen-
tary to the bulk of statistical basedmalware classifiers, which
are typically based onmeasures of overall similarity between
executable files. One problem with this approach is that a
malicious executable that shares some, but limited, function-
ality with known malware is likely to be misclassified as
benign. Here a new approach to malware classification is
introduced that classifies programs based on their similarity
with known malware subroutines. It is illustrated that mal-
ware and benign programs can share a substantial amount
of code, implying that classification should be based on
malicious subroutines that occur infrequently, or not at all
in benign programs. Various approaches to accomplishing
this task are investigated, and a particularly simple approach
appears the most effective. This approach simply computes
the fraction of subroutines of a program that are similar to
malware subroutines whose likes have not been found in a
larger benign set. If this fraction exceeds around 1.5%, the
corresponding program can be classified as malicious at a
1 in 1000 false alarm rate. It is further shown that combin-
ing a local and overall similarity based approach can lead
to considerably better prediction due to the relatively low
correlation of their predictions.
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1 Introduction

Advanced Persistent Threat, or APT, has emerged in recent
years as a significant concern to the network security of larger
businesses and government agencies [28]. This type of cyber
attack is used to denote attacks from well organized groups
who persistently attempt to gain and maintain access to a
targeted network to obtain a specific objective, typically the
exfiltration of intellectual property.

A targeted network intrusion commonly involves the
installation of one or more malicious programs. Therefore,
a natural approach to detecting an APT intrusion is looking
for tell tale signs of known APTmalware, such as file hashes
and byte-sequences found in other targeted malware. These
approaches are valuable, however, it is known that signature
based detection can fail in the presence of even minor mod-
ifications of a malicious program, see e.g. [3]. This fact has
prompted significant research into statistical malware classi-
fication, which has shown great success at detecting so-called
mass malware. A key reason for this success is the high sim-
ilarity between malware programs, and Microsoft estimates
that 75% of themost prevalent massmalware can be grouped
into as few as 26 families [16].

Statistical malware classification of APT malware has
received little attention in the literature. However, there is
reason to believe that the approach will be valuable, due to
reported commonality between various APT malware. For
instance, [7] examined 11 seemingly unrelated APT cam-
paigns targeting a range of industries. The report uncovered
that the campaigns used malware sharing common code ele-
ments, and concluded that the attacks shared a common
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Fig. 1 Two programs. Boxes represent subroutines of program, and
arrows depict one subroutine calling another. The shaded region of
subroutines for Program A and Program B represents a shared set of
subroutines. ProgramAwas correctly classified as malicious by an svm

classifier based on overall 2-gram opcode similarity, while Program B
was incorrectly classified as benign, despite Program A being in APT
malware training sample. The subroutines in the shaded region were
not matched in benign set of 4500+ programs

development infrastructure. [21] provide further evidence of
the reuse of code in APT malware, and describe a clustering
methodology for extracting common functional elements.
Also using clustering, [13] graphically depict the relation-
ships between several APT malware samples, showing how
they can be naturally grouped into families. These observa-
tions indicate that statistical detection of APT malware will
be fruitful, and a primary goal of this work is to investigate
this issue. As a case studywe usemalicious executables from
the APT 1 family, which were released along with a highly
publicized report [15].

The bulk of statistical malware classification approaches
are based on different notions of overall program similarity.
For instance, [12] summarized an executable using counts of
byte-sequence n-grams across the entire program, see also
[19]. [22] used a related approach and considered the n-
grams of assembly level operational codes (opcodes), while
[1,27] showed that treating the opcode sequence as aMarkov
chain can be highly beneficial. [20] describe a variant of the
Markov chain approach and apply it to metamorphic mal-
ware detection, a subject that received considerable interest
[10,23,26,29,30]. [4] described an approach to comparing
the similarity between two binary files without the need for
feature extraction, and [2,25] use the concept of structural
entropy to identify similar binary files. Methods using API
calls have also received considerable attention, such as [9]

where program similarity is based on the edges in the API
call-graph. Subroutine call-graph similarity has also been
extensively studied. For instance, [31] describe an approach
where the similarity between programs is defined as the num-
ber of edges in the program graph that are shared, [11] use
graph edit distance to measure similarity between programs,
and [17] describe behavioral graph clustering.

Though many of the above overall similarity measures
have shown to produce highly accurate classifiers, they do
have one undesirable property. In particular, they will have
difficulty in accurately classifying programs that reuse a
smaller fraction of known malware code. One such classi-
fier is applied in Sect. 5 of this article, namely the SVM
classifier of [1], which is based on overall opcode simi-
larity. This classifier performed well in our investigations,
however its results did suggest room for improvement. An
example is given in Fig. 1 where two APT programs that
share a block of subroutines are graphically depicted. Here
the boxes represent the subroutines, and the directed edges
their call structure. The classifier correctly classified Pro-
gram A as being malicious, however it failed to correctly
classify Program B, even when Program A was in the train-
ing set of APT programs. One reason for this failure could
be that the local similarity exhibited by these two programs
is diluted by the overall similarity measure used by the
classifier.
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To avoid the above type of behavior, this article describes a
new approach tomalware classification. In particular, instead
of computing overall similarities between programs, we
explicitly focus on the similarity of a programs subroutines
with that of known malware subroutines. The rationale for
doing this is that when code and functionality is reused this
is most naturally done at the subroutine level. The approach
has the added advantage that a malware program can be
correctly classified even when its overall characteristics are
more similar to known benign programs, as long as it con-
tains subroutines similar to the known malicious set. Various
approaches are introduced to carry out the subroutine based
classification. One is a logistic regression where the features
of a program are the similarities to the malware subroutines,
another is a related Naive Bayes approach. In addition, two
simple summaries are introduced to describe how similar
a programs subroutines are to the malware set, taking into
consideration the number of times the similar subroutines
are found in benign programs.

The remainder of the article is as follows. In Sect. 2 we
describe the data used in this article, which are disassembled
binaries, and the features extracted from these. In Sect. 3 the
subroutine based classifiers are introduced, and Sect. 4 gives
the application to the APT sample. Section 5 concludes.

2 The data

There are two high level categorizations of malware detec-
tion techniques, static analysis and dynamic analysis. The
first refers to analysis of an executable file without actu-
ally running it. A common approach to performing static
analysis is via a disassembler, such as IDA-Pro [5], which
produces a text file of assembly code corresponding the
binary executable. The disassembled file breaks the code into
subroutines, gives the opcodes used by the subroutines, their
calls to other subroutines as well as to any API calls. An
example of a subroutine of a disassembled file is given in
Listing 1. Dynamic analysis refers to running the executable
file, which is typically done in a sandbox environment. There
are pros and cons associated with both analysis approaches.
Static analysis gives a more complete picture of a program,
however disassembly can be challenging if the program has
been packed, essentially encrypting the binary file. Dynamic
analysis will always be possible, however conditional exe-
cution can limit visibility into the true functionality of the
program.

The APT 1 malware considered here consists of 197 pro-
grams, spread across 37 (sub-)families. Each of the programs
were successfully disassembled using IDA-Pro, and we here
focus on designing classifiers based on disassembled exe-
cutables. In addition to the APT malware, a sample of 4622
non APT disassembled programs is also used. These benign

Listing 1 A disassembled function

func_223f4
...

mov eax, [esp+43Ch+var_410]
lea ecx, [esp+43Ch+dwNumberOfBytesRead]
push ecx ; lpdwNumberOfBytesRead
lea edx, [esp+440h+Buffer]
mov ecx, [eax+4]
push 3FFh ; dwNumberOfBytesToRead
push edx ; lpBuffer
push ecx ; hFile
call ds:InternetReadFile
mov edx, [esp+43Ch+dwNumberOfBytesRead]
mov [esp+43Ch+var_414], eax
lea edi, [esp+43Ch+Buffer]
or ecx, 0FFFFFFFFh
xor eax, eax
mov [esp+edx+43Ch+Buffer], bl
repne scasb
mov eax, ds:dword_4091EC
mov edx, [esp+43Ch+var_420]
not ecx
dec ecx
sub eax, edx
mov esi, ecx
cmp eax, esi
ja short bb_86d4
call func_7b5e

...
func_223f4 endp

programswere taken from a program analysis tool and repos-
itory at Los Alamos National Laboratory called CodeVision.
In the following, the APT 1 malware sample will be referred
to as the malware sample, and the 4622 sample of non-APT
programs will be referred to as the benign sample.

A disassembler breaks an executable into its subroutines,
and gives the assembly code for each subroutine along with
any calls to imported libraries. Listing 1 shows an example
of such a subroutine, labelled func_223f4. The first column
gives the opcodes (mov,leav, push etc.) with the following
columns giving the operands. In this code sequence two other
functions are called. The first is a call to the API function
ds:InternetReadFile, and the second is a call to another func-
tion in the program, labeled func_7b5e.

3 Measuring subroutine similarity

The disassembled subroutines need to be reduced to a for-
mat amenable to processing. Here we only use the sequence
of opcodes to summarize a subroutine, and ignore API and
internal calls as well as the opcode operands. This is done
for simplicity, as well as the fact that this sequence has been
shown to be a powerful basis for classification [1,27]. The
sequence of opcodes in a subroutine are summarized using
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n-grams [19]. An n-gram is a sequence of n consequential
symbols from some alphabet, here the set of opcodes. In
our study we have used 2-gram throughout, with the first
three 2-gram in Listing 1 being (mov, lea), (lea, push),
(push, lea). Our decision to use 2-gram was based on sim-
plicity as well as the fact that this choice has performed well
in other studies [1,27].

There are a large number of opcodes in the X86 instruc-
tion set. In [27] it is shown that using a coarser categorization
of these codes can be beneficial. In that work a categoriza-
tion from the Python library ’pydasm’ with 86 categories
was shown to produce good results. Using 2-gram means
that each subroutine is summarized using the count vector
of the 862 possible 2-gram of the categorized instruction set.
More formally, letting u denote a subroutine we use omk(u)

to denote the count of the 2-gram (m, k) in u, summarizing u
with the vector o(u) = {omk(u)}86m,k=1 . A program p is here
treated as a collection, or bag, of subroutines and is given by
o(u) for u ∈ p.

The distance between the 2-gram opcode sequence in a
subroutine u with that of a subroutine v is here defined as

d(u, v) =
∑

m,k

|omk(u) − omk(v)|. (1)

This distance can be converted to a similarity score, a number
between 0 and 1, using

s(u, v) = 1 −
∑

m,k |omk(u) − omk(v)|
∑

m,k omk(u) + ∑
m,k omk(v)

(2)

where the denominator on the left gives the total number of
2-gram in the two subroutines.

4 Classifiers

It is perhaps surprising that a number of subroutines found
in malware are also common to benign programs. Some of
this could be due to the compilation process, some from
the borrowing of code from public ally available programs.
Whatever the reason, the implication is that classifying a
program as malicious simply because it has a subroutine
common to a malware program is a poor strategy.

To illustrate, we took the APT 1 sample of programs and
computed the similarity between their subroutines, using (2),
with those found in a set of around 1700 benign programs. If a
benign subroutine was found whose similarity to a malware
subroutine was greater than 0.9, a somewhat arbitrary yet
high value, the malware subroutine was considered matched.
Figure 2 shows the results for three of the malware programs,
where the fraction ofmatched subroutines to the total number
of subroutines in each program is plotted. The x-axis in the
plot corresponds the number of benign programs examined,
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Fig. 2 Cumulative subroutine match. The plot depicts three different
APT 1 programs, giving the fraction of subroutines matched by at least
one benign program as a function of the number of benign programs
examined

while the y-axis gives the cumulative fraction of different
subroutines that have been matched. In all three programs,
the number of matches climbs rapidly for the first 300 or so
benign programs, after which it flattens out.

4.1 Threshold matching classifiers

The plots in Fig. 2 suggest a simple approach to classification,
namely basing classification on malware subroutines that are
not similar to any, or only a few, of the subroutines in a benign
training set. To implement this idea, we say that a subroutine
v matches a subroutine u if the similarity between the two
equals or exceeds some threshold α, that is if s(u, v) ≥ α

then u and v match each other, with s(, ) defined in (2).
This approach can be carried out in two ways. The first is
to consider all malware subroutines together, the second is
to treat programs separately. These two variants are detailed
below.

Combined subroutine matching
Here consider combining the subroutines across all malware
programs. To summarize a program p, we define the variable

N (α)
k (p) =

∑

u∈Uk

∑

v∈p

I (s(u, v) ≥ α), (3)

where Uk are all malware subroutines that were matched
exactly k times by benign subroutines in the training data.
Thus, N (α)

0 (p) is the number of subroutines in p that
match subroutines that were not matched in the training
set, N (α)

1 (p) denotes the number of matches to subroutines
that were matched only once in the training set, and so on.
The probability of Nk exceeding a particular value clearly
depends on the number of subroutines in p. Empirical inves-
tigation revealed, not surprisingly, that the expectation of
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N (α)
k (p) scaled approximately linearly with the number of

subroutines in p, denoted n p. We therefore use the feature
vector

(N (α)
0 (p), N (α)

1 (p), .., N (α)
K (p))/n p (4)

as the basis for classifying program p.
The feature vector in (4) can be used as input to a classifier,

such as a linear logistic regression or a tree boosted classifier.
A somewhat different approach is to view the classification
problem as a hypothesis test. In this setting, each N (α)

k (p)/n p

can be thought of as a test statistic, with its null distribution
being its distribution on benign programs. To combine across
multiple test statistics, p-value combination [14] can be used.
Letting zk,p denote the realized value of N (α)

k (p)/n p, then

the associated p-value is P(N (α)
k (p∗)/n p ≥ zk,p) where p∗

is a randomly sampled benign program. A combined test sta-
tistic can be formed by, for instance, taking the minimum
across the p-values, or using some other combination func-
tion, such as Fishers method [14].

Program specific matching
The above approach treats the subroutines across all malware
programs equally. It can, and appears to be the case from Fig.
2, that the probability of matching varies across the malware
programs. For instance, for the program plotted with dotted
lines in Fig. 2, well over half of the subroutines werematched
by subroutines in the 1700 benign programs. However, for
the program program plotted with dashed lines, only 1/6-th
of the subroutines werematched. It may therefore be sensible
to define program specific matching statistics. To do so we
let N (α)

k|m(p) denote the number of subroutines in malware
programm that are matched by subroutines from p and were
matched k times in the training sample. The feature vector for
p is then the vector of N (α)

k|m(p) for k = 1, .., K and m ∈ M .
To implement the p-value combination approach with the

N (α)
k|m(p) statistics, we first form a p-value of each N (α)

k|m(p),
and take theminimumacross these for eachmalware program
m and then finally across all m ∈ M . This minimum forms
the basis for classification. The null-distribution of each
N (α)
k|m(p)/n p is modelled as a mixture of an exponential and

a point mass at zero. The point mass probability is estimated
using one minus (

∑
p∈B I (N (α)

k|m(p) > 0) + 1)/(|B| + 1),
with the mean of the exponential set to the observed mean of
N (α)
k|m(p)/n p for observations with N (α)

k|m(p) > 0.

4.2 Rank based classifiers

One possible improvement over the threshold matching
approach is to include information on the ranking of a sub-
routine similarity. To do this, let sk(u) denote the k-th largest

similarity observed in the benign training sample to malware
subroutine u. We define

R(α)
k (p) =

∑

v∈p

∑

u∈M
I {max(sk(u), α) ≤ s(u, v) ≤ sk−1(u)},

(5)

with s0(u) ≡ 1. Thus, R(α)
1 (p) is the number of malware

subroutines that are more similar to subroutines in program
p than to any of the subroutines in the benign training set.
The expected value of R(α)

k (p) scales approximately with the
number of subroutines in p, and the feature vector

(R(α)
1 (p), R(α)

2 (p), ..., R(α)
K (p))/n p, (6)

is used for classifying program p.
This rank based approach can also be applied in a pro-

gram specific manner. In which case we have the statistics
R(α)
k|m(p) k = 1, .., K giving the rank statistics for program

p associated with malware program m. Classifiers using the
rank based features can be formed in amanner similar that for
the thresholdmatching features. That is, the feature vector (6)
can be used in, for instance, a logistic regression classifier, or
the hypothesis testing approach described in Sect. 4.1 can be
used by treating the R(α)

2 (p)/n p quantities as test statistics.

4.3 Logistic regression classifier

The malware subroutines u ∈ U can be used to form a fea-
ture vector for a program p. In particular, for a malware
subroutine u, the distance to the closest subroutine of a pro-
gram p can be found, i.e. dp,u ≡ minv∈p d(v, u), and the
vector defined by du,p u ∈ U can be used for classification.
Here the malware subroutines across all of the available APT
programs were used to form the feature vector. A logistic
regression model was used, and flexibility was added using
the transformation xp,u(θ) = exp (−θ · dp,u) where θ > 0
is a parameter to be estimated. This leads to the model

Pr(p is malicious) =
{
1 + exp (−β0 −

∑

u∈M
βu · xp,u(θ))

}−1

. (7)

There were around 7000 unique APT subroutines, and
penalized regression methodology was used to fit (7). In par-
ticular, we used elastic net logistic regression methodology
of [32], implemented in the R package glmnet by [8].

4.4 Naive Bayes classifier

The final classifier we consider is based on the Naive Bayes
approach. In particular, we define Eu to be the event that
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I (maxv∈p s(v, u) ≥ α) = 1 for u ∈ U , i.e. that there is a
subroutine in program pwhose similarity tomalware subrou-
tine u exceeds α. Classification is then based on an estimate
of the probability

Pr(p is malicious|Eu1 , Eu2 , ..). (8)

which is the probability that p is malware given that it
matches the malware subroutines u1, u2, ... Treating the Eu

events as independent, the Naive Bayes assumption, implies
that the logit transform of (8) is

β0 +
Kp∑

k=1

log
Pr(Euk |p is malicious)

Pr(Euk |p is benign)
, (9)

where Kp = ∑
u I (maxv∈p s(v, u) ≥ α).

To form (9), estimates of Pr(Eu |p is malicious) and
Pr(Eu |p is benign) are required. For this task observed
frequencies are used, setting Pr(Eu |p is malicious) to the
fraction of malware programs where event Eu was observed.
The probability Pr(Eu |p is benign) was treated similarly,
however special care was taken for the malware subroutines
that were not matched by any of the benign programs. For
such subroutines, the probability that they will be matched
by a future benign program can be obtained using a non-
parametric empirical Bayes result due to Robbins and Good,
see [6]. In particular, let n1 denote the number of malware
subroutines that were matched only once in the benign train-
ing set, and N the total number of malware subroutines that
were matched, including repetitions. In a new benign set of
equal size as the benign training set, the fraction of subrou-
tine matches that will come from the previously unmatched
subroutines can be estimated n1/N . Dividing this estimate
by the number of benign programs as well as the number
of unmatched subroutines gives an average probability that a
specific onewill bematched by a subroutine from a randomly
selected benign program. This value is used here as an esti-
mate of Pr(Eu |p is benign) when Eu has not been observed.

5 Application

5.1 Matching and rank based classifiers

Here we investigate how to best make use of the threshold
matching and rank-based features described in Sect. 4. The
feature vector corresponding the rank-based features for a
program p is

(R(α)
1 (p), R(α)

2 (p), ..., R(α)
K (p))/n p, (10)

with a similar vector for the thresholdmatching features. This
vector depends on two parameters α and K , and sensible

Table 1 Thresholdmatching and rank based classifiers. The table gives
the true positive rates, at a 5 in 1000 false positive rate, associated with
different classifiers using either matching or rank based features

Method α = 0.8 α = 0.9 α = 0.99

minP(N1) 0.936 0.959 0.963

minP(N1:2) 0.931 0.954 0.961

minP(N1:3) 0.930 0.948 0.956

minP(R1) 0.963 0.958 0.964

minP(R1:2) 0.960 0.956 0.961

minP(R1:3) 0.957 0.950 0.957

boost(R1:10) 0.958 0.953 0.959

logistic(R1:10) 0.941 0.937 0.943

N1:K denotes the features of the first K matching statistics, similar
for R1:K . Results are based on 40 repetitions of sampling 50% of the
malware and 90% of the benign programs

values of these need to be determined. Further, given these
feature vectors, a sensible classification strategy needs to be
found.

Table 1 summarizes the results of an investigation into
these issues. There three types of classifiers are referenced.
The first is based on treating the N (α) and R(α) vectors as test
statistics. Computing the p-value for each element of these
vectors and then forming a combined score using the mini-
mum across these p-values, the so-called minP combination
method. This approach was applied separately to the N (α)

and R(α) vectors using an increasing value of K . It is seen
from the table that simply using K = 1 seems to give the best
results for both approaches. For bothmethods α = .99 seems
best, and at this value the approaches give almost identical
results. In addition to the hypothesis testing approach, the
feature vectors with K = 10 were used as input to two clas-
sifiers. The first was a gradient boosted logistic regression
using trees as base-learners, via the R package [18]. The sec-
ondwas a linear logistic regression. Of these two, the boosted
tree classifier performed the best, though slightly poorer than
the minP method with K = 1. These results indicate that a
very simple classifier is sufficient for these two feature sets,
either R(0.99)

1 (p)/n p or N
(0.99)
1 (p)/n p.

The simple classifier classifies a program as malicious
if R(0.99)

1 (p)/n p ≥’threshold’. Figure 3 shows how the false
positive rate of this classifier varies with the ’threshold’ para-
meter. It is seen that if 1.5% of a programs subroutines are
highly similar to malware subroutines that previously have
not been found similar to benign subroutines, the program
can be classified as malicious with about a 1 in 1000 false
alarm rate.

5.2 Comparison

Here the results of a comparison between the proposed sub-
routine based classifiers is given, aswell as a comparisonwith
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Fig. 3 Cutoff for R(α)
1 . The figure plots the false positive rate as a

function of the threshold used for R(0.99)
1 to classify a program as benign

or malicious. If R(0.99)
1 /n p ≥’threshold’ then program is classified as

malicious

some overall similarity based classifiers. All classifiers are
based only on opcodes. Two variants of theNaive Bayes clas-
sifierwere implemented. Thefirst used the score obtained (9),
the second standardized this score by dividing by the number
of subroutines in the a program.

Two overall similarity approaches are investigated. One
uses 2-gram to summarize a program, the other a standardized
variant that treats the opcodes as a Markov chain, summariz-
ing the program using the transition matrix, see [27]. Letting
o(p) denote the count vector associated with the 2-gram,
the distance between p and a program q is computed using
||o(p) − o(q)||1. The distance between the Markov transi-
tion probabilities is computed similarly. Two classifiers using
these features sets are used, a kNN classifier and an SVM.
The latter requires a similarity matrix which is formed by
the entries exp{−ν||o(p) − o(q)||1}, ν > 0. All parame-
ters associated with these approaches were estimated using
cross-validation approaches.

The malware programs are divided into 37 families and
we first consider the out-of-family classification accuracy.
This comparison was done by 40 repetitions of first selecting
90% of the benign programs for training, and then training
37 classifiers each time holding out all members of a family.
For each repetition the error rates were computed, and these
were then averaged.

The results for the out-of-family classification are given
in Table 2. At the lowest false alarm rate of 0.1% the best
subroutine based classifier was R(.99)

1|M , obtained by minimum

p-value combination of program specific R(.99)
1 statistics,

giving 88.7% true positive rate. The unstandardized naive
bayes method and the logistic regression performed less
well, however the standardized naive bayes approach per-
formed well. The best performing overall similarity based

Table 2 Out-of-family classification

Method 0.1% FAR 0.5% FAR 1% FAR

Local

R(.99)
1 0.845 0.896 0.907

R(.99)
1|M 0.887 0.908 0.908

N (.99)
1 0.845 0.896 0.907

naive bayes st. 0.812 0.886 0.894

naive bayes unst. 0.330 0.689 0.824

logistic regression 0.608 0.620 0.635

svm(markov) 0.849 0.941 0.953

svm(ngram) 0.540 0.863 0.899

knn(markov) 0.547 0.776 0.854

knn(ngram) 0.432 0.635 0.719

Combined

R(.99)
1 +svm(markov) 0.889 0.965 0.975

R(.99)
1|M +svm(markov) 0.933 0.974 0.984

The table gives the true positive rates for various classifiers at three
different False Alarm Rates (FAR)
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Fig. 4 ROC curves. The plot shows the ROC curves for four different
classifiers in the out-of-family comparison. The dashed curve corre-
sponds R(.99)

1 , the dotted curve corresponds R(.99)
1|M , the dashed-dotted

curve corresponds the svm classifier using Markov chain opcode rep-
resentation, and the solid curve corresponds the classifier combining
R(.99)
1|M with the svm classifier

classifier was the SVM using the the markov chain opcode
representation, giving a true positive rate of 84.9%. There
were significant differences between which malware pro-
gramsweremisclassifiedby theSVMapproach and the R(.99)

1|M
and R(.99)

1 based classifiers, suggesting that a combination of
the two approaches could be beneficial. The results of this
combination are given in the table. In particular, combining
the SVM approach with R(.99)

1|M gave a true positive rate of
93.3% at a 1 in 1000 false alarm rate, a significant improve-
ment over both approaches individually. The ROC curves
for four of the classifiers are given in Fig. 4. These classifiers
were R(.99)

1 , R(.99)
1|M , the SVM Markov chain, and the clas-
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sifier combining the latter two. The (partial) area under the
curve statistics for these were 0.860, 0.884, 0.885 and 0.948,
respectively.

6 Discussion

This article has introduced a new approach to malware clas-
sification that is somewhat intermediary between the byte
sequence signatures often used by Anti-Virus software and
the overall similarity approach to statistical classification.
The results show that statistical detection of APT malware
is promising, and in particular that focusing on malware
subroutine similarity produces accurate and simple classi-
fiers.

An important question regarding the proposed methodol-
ogy is its robustness to obfuscation attempts. Table 1 sheds
some light on this question, where the detection rates of the
various classifiers are given for different levels of the simi-
larity threshold α. This parameter determines the threshold
at which two subroutines are considered similar. It is seen
that detection rates are qualitatively similar for α ≥ 0.8,
suggesting that the proposed methods might be robust to
moderate degrees of obfuscation.However, experimentswith
α set substantially below 0.8 resulted in considerably poor
detection.

The article has, for sake of simplicity, only considered
opcode sequences as a basis for subroutine similarity. How-
ever, API calls also carry a significant information regarding
the functionality of a given piece of code [24]. Including such
features could improve detection, and might improve robust-
ness against obfuscation attempts. Further, we have classified
programs by treating them as a bag-of-subroutines, ignoring
any links between the subroutines, such as those depicted
in Fig. 1. Including such information might also increase
detection accuracy. A further direction for future research
would be to apply the idea of local similarity based detec-
tion to data obtained via dynamic analysis. One advantage of
this approach is that it circumvents the disassembly process,
which can be challenging for some packed binaries.
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